Kvadrātfunkcija
Šis raksts neatbilst pieņemtajiem noformēšanas kritērijiem. Lūdzu, palīdzi uzlabot šo rakstu. Diskusijā var parādīties dažādi ieteikumi. Vairāk lasi lietošanas pamācībā. |
Šajā rakstā ir pārāk maz vikisaišu. Lūdzu, palīdzi uzlabot šo rakstu, saliekot tajā saites uz citiem rakstiem. Diskusijā var parādīties dažādi ieteikumi. Vairāk lasi lietošanas pamācībā. |
Kvadrātfunkcija ir funkcija, kuru apraksta vienādojums , kur a,b,c ∈ R un a≠0. [1] Funkcijas grafiks ir parabola. [2]
Šīs funkcijas definīcijas un vērtību apgabals ir visi reālie skaitļi.
Saknes un diskriminants[labot šo sadaļu | labot pirmkodu]
Funkcijas saknes jeb nulles nosaka funkcijas x vērtības krustpunktā ar abscisu. Sakņu skaits var būt dažāds, un tas ir atkarīgs no diskriminanta vērtības. [3]
Diskriminantu var aprēķināt pēc formulas :
Saknes var aprēķināt pēc formulas
[6]
:
Vai noteikt pēc Vjeta teorēmas
[7]
:
Krustpunkts ar y asi[labot šo sadaļu | labot pirmkodu]
Lai aprēķinātu koordinātas krustpunktam ar y asi funkcijas vienādojumā x vietā ievieto 0.
Piemēram:
Funkcijas grafiks krusto y asi punktā (0;1)
Krustpunktam ar y asi simetriska punkta x koordinātas, kas pieder pie grafika, var aprēķināt pēc formulas
Parabolas zaru vērsums[labot šo sadaļu | labot pirmkodu]
Parabolas zaru vērsumu nosaka koeficients pie kvadrātlocekļa.
Ja , zari ir vērsti uz augšu (piemēram, ), bet ja , zari ir vērsti uz leju (piemēram, ). [8]
Parabolas virsotnes punkts un maksimālā, minimālā vērtība[labot šo sadaļu | labot pirmkodu]
Jebkurai parabolai ir virsotne, kuru visbiežāk apzīmē ar (xv;yv) vai (xo;yo).
Virsotnes x koordinātas aprēķina pēc formulas:
Bet virsotnes y koordinātas iegūst ievietojot x virsotnes koordinātas funkcijas vienādojumā:
Virsotnes y koordināta norāda uz funkcijas maksimālo vai minimālo vērtību.
Ja zari ir vērsti uz augšu, tad virsotnes y koordināta norāda uz minimālo funkcijas vērtību un maksimālā vērtība nav nosakāma, bet ja zari ir vērsti uz leju, tad virsotnes y koordināta norāda uz maksimālo funkcijas vērtību un minimālā vērtība nav nosakāma. [9]
Paritāte [labot šo sadaļu | labot pirmkodu]
Kvadrātfunkcija nevar būt nepāra funkcija.
Tā ir vai nu pāra vai ne pāra, ne nepāra.
Paritātes noteikšana pēc funkcijas vienādojuma[labot šo sadaļu | labot pirmkodu]
Funkcija ir pāra, ja:
Piemēram, pārbaudīsim vai funkcija ir pāra funkcija:
Abas puses sakrīt, tātad funkcija ir pāra funkcija.
Tagad pārbaudīsim vai funkcija ir pāra funkcija:
Abas puses nesakrīt, tātad funkcija nav pāra funkcija, jeb ir ne pāra, ne nepāra funkcija.
Paritātes noteikšana pēc funkcijas grafika[labot šo sadaļu | labot pirmkodu]
Funkcija ir pāra, ja tā ir simetriska pret y asi jeb ,
Šīs ir pāra funkcijas
Šīs ir ne pāra, ne nepāra funkcijas
Vienādzīmju intervāli[labot šo sadaļu | labot pirmkodu]
Funkcijas
grafika zari ir vērsti uz augšu
Funkcijas
grafika zari ir vērsti uz leju
Funkcijas
grafika zari ir vērsti uz augšu
Funkcijas
grafika zari ir vērsti uz leju
Ja parabolas zari ir vērsti uz augšu un , tad
un
Ja parabolas zari ir vērsti uz leju un , tad
un
Vienādzīmju intervāli funkcijām bez saknēm[labot šo sadaļu | labot pirmkodu]
Ja funkcijas grafiks atrodas tikai virs x ass, tad funkcija visā D.A. ir pozitīva.
Bet ja funkcijas grafiks atrodas tikai zem y ass, tad funkcija ir visā D.A. negatīva.
Piemēram, funkcijai sakņu nav un parabolas zari ir vērsti uz augšu, tas nozīmē, ka tai ir tikai viens vienādzīmju intervāls , ja
Monotonitāte[labot šo sadaļu | labot pirmkodu]
Funkcija ir augoša, ja palielinoties x vērtībām, palielinās y vērtības.
Funkcija ir dilstoša, ja palielinoties x vērtībām, samazinās y vērtības.
Ja parabolas zari ir vērsti uz augšu, tad funkcija ir dilstoša intervālā , bet augoša .
Ja parabolas zari ir vērsti uz leju, tad funkcija ir dilstoša intervālā , bet augoša .
Pārbīdes[labot šo sadaļu | labot pirmkodu]
Katrs koeficients veic kādu noteiktu pārbīdi.
Koeficients | Kādu pārbīdi tas veic | Attēls |
---|---|---|
a | Mainot a koeficientu, mainās zaru vērsums un platums. Zari ir vērsti uz augšu, ja , bet uz leju, ja . Jo lielāks a koeficients, jo tuvāk parabolas zari atradīsies pie funkcijas simetrijas ass. |
|
b | B koeficients nosaka pārbīdi pa x asi. Parabola būs pa kreisi no y ass, ja , parabolas virsotne atradīsies uz x ass, ja , parabola būs pa labi no y ass, ja . |
|
c | C koeficients nosaka pārbīdi pa y asi un nosaka y koordinātas krustpunktā ar y asi. Ja , tad parabola tiks virzīta uz augšu pa y asi, ja , tad parabola tiks virzīta uz leju pa x asi, bet ja parabola krustos y asi punktā (0;0). |
Skatīt arī[labot šo sadaļu | labot pirmkodu]
Atsauces[labot šo sadaļu | labot pirmkodu]
- ↑ "Beyond the Quadratic Formula", Ron Irving, 21. lpp, ISBN 978-0883857830
- ↑ "Introductory and Intermediate Algebra: An Applied Approach", Richard Aufmann, Joanne Lockwood, 616 lpp., ISBN 978-1133365419
- ↑ "Elementary and Intermediate Algebra", Ron Larson, 638. lpp, ISBN 978-0547102160
- ↑ "Beyond the Quadratic Formula", Ron Irving, 29. lpp, ISBN 978-0883857830
- ↑ "Introductory and Intermediate Algebra: An Applied Approach", Richard Aufmann, Joanne Lockwood, 582 lpp., ISBN 978-1133365419"
- ↑ "Technical Shop Mathematics", Thomas Achatz, John G. Anderson, Kathleen McKenzie, 276. lpp, ISBN 978-0736087360
- ↑ "Quadratic Equation" From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/QuadraticEquation.html, Weisstein, Eric W.
- ↑ "Mathematics: quadratic equations.: How solve a quadratic equation.", Marilù Garo, 5. lpp
- ↑ "Introductory and Intermediate Algebra: An Applied Approach", Richard Aufmann, Joanne Lockwood, 622 lpp., ISBN 978-1133365419