Pāriet uz saturu

Eilera funkcija

Vikipēdijas lapa

Skaitļu teorijā Eilera funkcija no naturāla skaitļa n ir visu to naturālo skaitļu skaits, kas nepārsniedz n un ir savstarpēji pirmskaitļi ar n. Turklāt , jo 1 ir savstarpējs pirmskaitlis ar sevi. Tālāk, piemēram, , jo seši skaitļi 1, 2, 4, 5, 7 un 8 ir savstarpēji pirmskaitļi ar 9.

Funkcija ir nosaukta Šveices matemātiķa L. Eilera vārdā, kas to ir pētījis. Dažreiz to sauc arī par Eilera fī funkciju, jo to parasti apzīmē ar grieķu burtu .

Eilera funkcijas aprēķināšana

[labot šo sadaļu | labot pirmkodu]

Nav grūti saprast, ka ja p ir pirmskaitlis, tad . Tālāk, jebkuram naturālam k un pirmskaitlim p . Vēl vairāk, ir multiplikatīva funkcija. Tas nozīmē, ka ja m un n ir savstarpēji pirmskaitļi, tad .

Tāpēc vērtību pie var aprēķināt, izmantojot aritmētikas pamatteorēmu: ja

kur pi ir dažādi pirmskaitļi, tad

.

Pēdējo formulu var uzrakstīt arī šādi:

.