Teilora rinda

Vikipēdijas lapa
Pārlēkt uz: navigācija, meklēt

Teilora rinda matemātikā ir funkcijai, kam punktā a eksistē visu kārtu atvasinājumi, piekārtota rinda, kuras parciālsummas ir polinomi. Šo rindu 1715. gadā publicējis angļu matemātiķis Bruks Teilors (Brook Taylor).

Teilora rindu pieraksta šādi:

 \sum_{n=0} ^ {\infty} \frac {f^{(n)}(a)}{n!} \, (x-a)^{n} = f(a)+\frac {f'(a)}{1!} (x-a)+ \frac{f''(a)}{2!} (x-a)^2+\frac{f^{(3)}(a)}{3!}(x-a)^3+ \cdots,

kur n! ir n faktoriāls un ƒ (n)(a) ir funkcijas ƒ n-tās kārtas atvasinājums punktā a.

Gadījumā, ja a = 0, tad šo rindu sauc par Maklorena rindu (nosaukta skotu matemātiķa Kolina Maklorena (Colin Maclaurin) vārdā).

Dažu funkciju izvirzījumi Maklorena rindā[labot šo sadaļu | labot pirmkodu]

Eksponentfunkcija:

e^{x} = \sum^{\infin}_{n=0} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots\quad\text{ visiem } x\!

Naturāllogaritms:

\ln(1-x) = - \sum^{\infin}_{n=1} \frac{x^n}n\quad\text{, kur } |x| < 1
\ln(1+x) = \sum^\infin_{n=1} (-1)^{n+1}\frac{x^n}n\quad\text{, kur } |x| < 1

Ģeometriskā rinda:

\frac{1}{1-x} = \sum^\infin_{n=0} x^n\quad\text{, kur }|x| < 1\!

Binomiālā rinda:

(1+x)^\alpha = \sum_{n=0}^\infty {\alpha \choose n} x^n\quad\text{ visiem }|x| < 1 \text{ un kompleksajiem } \alpha\!

ar vispārinātiem binomiālkoeficientiem

{\alpha\choose n} = \prod_{k=1}^n \frac{\alpha-k+1}k = \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}

Trigonometriskās funkcijas:

\sin x = \sum^{\infty}_{n=0} \frac{(-1)^n}{(2n+1)!} x^{2n+1} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots\quad\text{ visiem } x\!
\cos x = \sum^{\infin}_{n=0} \frac{(-1)^n}{(2n)!} x^{2n} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots\quad\text{ visiem } x\!
\tan x = \sum^{\infin}_{n=1} \frac{B_{2n} (-4)^n (1-4^n)}{(2n)!} x^{2n-1} = x + \frac{x^3}{3} + \frac{2 x^5}{15} + \cdots\quad\text{, kur }|x| < \frac{\pi}{2}\!
\sec x = \sum^{\infin}_{n=0} \frac{(-1)^n E_{2n}}{(2n)!} x^{2n}\quad\text{, kur }|x| < \frac{\pi}{2}\!
\arcsin x = \sum^{\infin}_{n=0} \frac{(2n)!}{4^n (n!)^2 (2n+1)} x^{2n+1}\quad\text{, kur }|x| \le 1\!
\arccos x ={\pi\over 2}-\arcsin x={\pi\over 2}- \sum^{\infin}_{n=0} \frac{(2n)!}{4^n (n!)^2 (2n+1)} x^{2n+1}\quad\text{, kur }|x| \le 1\!
\arctan x = \sum^{\infin}_{n=0} \frac{(-1)^n}{2n+1} x^{2n+1}\quad\text{, kur }|x| \le 1, x\not=\pm i\!

Hiperboliskās funkcijas:

\sinh x = \sum^{\infin}_{n=0} \frac{x^{2n+1}}{(2n+1)!} = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \cdots\quad\text{ visiem } x\!
\cosh x = \sum^{\infin}_{n=0} \frac{x^{2n}}{(2n)!} = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \cdots\quad\text{ visiem } x\!
\tanh x = \sum^{\infin}_{n=1} \frac{B_{2n} 4^n (4^n-1)}{(2n)!} x^{2n-1} = x-\frac{1}{3}x^3+\frac{2}{15}x^5-\frac{17}{315}x^7+\cdots \quad\text{, kur }|x| < \frac{\pi}{2}\!
\mathrm{arcsinh} (x) = \sum^{\infin}_{n=0} \frac{(-1)^n (2n)!}{4^n (n!)^2 (2n+1)} x^{2n+1}\quad\text{, kur }|x| \le 1\!
\mathrm{arctanh} (x) = \sum^{\infin}_{n=0} \frac{x^{2n+1}}{2n+1} \quad\text{, kur }|x| \le 1, x\not=\pm 1\!