Pāriet uz saturu

Kosinusu teorēma

Vikipēdijas lapa
Šajā trijstūrī leņķi α (vai A), β (vai B) un γ (vai C) attiecināmi attiecīgi pret a, b un c malām

Kosinusu teorēma trigonometrijā ir teorēma, kas apgalvo, ka trijstūrī jebkuras malas kvadrāts ir izsakāms ar divu pārējo malu kvadrātu summu, no kuras atņemts šo malu divkāršais reizinājums ar ietvertā leņķa (izsakāmās malas pretējais leņķis) kosinusu. Matemātiski tas pierakstāms šādi:

,

kur ir leņķis starp a un b malām.

No kosinusu teorēmas var tikt iegūta Pitagora teorēma, kas ir pareiza taisniem leņķiem: ja leņķis ir 90° liels, tad cos = 0 un kosinusu teorēma reducējas uz Pitagora teorēmu:

Parasti kosinusu teorēmu izmanto, ja ir zināmi trijstūra visu trīs malu garumi vai arī, ja ir zināmi divu malu garumi un leņķis starp tām.

Mainot malu a, b un c lomas oriģinālajā formulā, var tikt iegūtas šādas formulas:

Teorēmu rietumu pasaulē 16. gadsimtā popularizējis Fransuā Vjets.

Dažādmalu šaurleņķu trijstūris

Pierādījums dažādmalu šaurleņķu trijstūriem

[labot šo sadaļu | labot pirmkodu]

Pierādījums trijstūriem, kuriem visi leņķi mazāki vai vienādi par

  1. Pēc kosinusa definīcijas jeb
  2. Noņemot šo no malas iegūst
  3. Pēc sinusa definīcijas jeb
  4. Izmantojot Pitagora teorēmu, trijstūrī
  5. Ievietojot un , iegūst
  6. Atverot iekavas,
  7. Pārkārtojot izteiksmi,
  8. Izvelkot pirms iekavām,
  9. Pēc trigonometriskās pamatidentitātes , tādēļ izteiksme vienkāršojas

Pierādījums dažādmalu platleņķa trijstūriem

[labot šo sadaļu | labot pirmkodu]
Dažādmalu platleņķa trijstūris

Nepieciešams nedaudz citādāks pierādījums trijstūriem, kuriem viens leņķis ir lielāks par , jo divi augstumi ir ārpus trijstūra, līdz ar to nepieciešams papildināt zīmējumu.

  1. Pēc sinusa definīcijas, jeb
  2. Pēc kosinusa definīcijas jeb
  3. Noņemot b no abām pusēm, iegūst
  4. Izmantojot Pitagora teorēmu, trijstūrī
  5. Ievietojot un iegūst
  6. Atverot iekavas iegūst
  7. Izvelkot pirms iekavām,
  8. Pēc trigonometriskās pamatidentitātes , tādēļ izteiksme vienkāršojas

Novelkot citu augstumu un atkārtojot šo procesu, var pierādīt kosinusu teorēmu pārējām malām.[1]

Ārējās saites

[labot šo sadaļu | labot pirmkodu]
  1. «Proof of the Law of Cosines - Math Open Reference». mathopenref.com. Skatīts: 2023-01-24.