Ģeometriskā progresija
Izskats
Ģeometriskā progresija ir skaitļu virkne, kurā katrs loceklis tiek iegūts, iepriekšējo locekli reizinot ar konstantu no nulles atšķirīgu skaitli, ko sauc par kvocientu. Piemēram, skaitļu virkne 2, 6, 18, 54, ... ir ģeometriskā progresija ar kvocientu 3. Savukārt virkne 10; 5; 2,5; 1,25; ... ir ģeometriskā progresija ar kvocientu 1⁄2. Kvocients var būt arī negatīvs, tādējādi var iegūt alternējošu (maiņzīmju) ģeometrisko progresiju, piemēram, ja kvocients ir −3 un pirmais loceklis ir 1, var iegūt šādu virkni: 1, −3, 9, −27, 81, −243, ...
Ja ir zināms progresijas pirmais loceklis a1 un kvocients q, tad n-to locekli var aprēķināt pēc formulas:
Ģeometriskās progresijas pirmo n locekļu summa var tikt aprēķināta pēc formulas:
vai
Skatīt arī
[labot šo sadaļu | labot pirmkodu]Ārējās saites
[labot šo sadaļu | labot pirmkodu]
Šis ar matemātiku saistītais raksts ir nepilnīgs. Jūs varat dot savu ieguldījumu Vikipēdijā, papildinot to. |