Varbūtību sadalījuma funkcija
Varbūtību sadalījuma funkcija, arī saukta par kumulatīvo sadalījuma funkciju, ir funkcija, kas attēlo varbūtību, ka gadījuma lielums pieņem vērtību mazāku vai vienādu par . To parasti apzīmē ar lielo burtu , nepieciešamības gadījumā norādot arī gadījuma lielumu.
Sadalījuma funkcija pilnīgi definē gadījuma lielumu. Tā ir definēta gan nepārtrauktiem, gan diskrētiem gadījuma lielumiem.
Izmantojot sadalījuma funkciju iespējams noteikt varbūtību gadījuma lielumam pieņemt vērtības pusslēgtā intervālā :
Ja gadījuma lielums ir nepārtraukts, tad ir iespējams noteikt tā varbūtību blīvuma funkciju, atvasinot sadalījuma funkciju:
Analoģiski nepārtraukta gadījuma lieluma sadalījuma funkciju var izteikt, integrējot tā blīvuma funkciju:
Diskrētiem gadījuma lielumiem, kuri pieņem vērtības ar varbūtībām , sadalījuma funkciju var izteikt kā šo varbūtību summu:
Īpašības
[labot šo sadaļu | labot pirmkodu]Jebkurai sadalījuma funkcijai izpildās šādas īpašības:
- funkcija ir ierobežota un pieņem vērtības no 0 līdz 1: ;
- funkcija ir nedilstoša;
- ;
- ;
- funkcija ir nepārtraukta no labās puses: .
Skatīt arī
[labot šo sadaļu | labot pirmkodu]Ārējās saites
[labot šo sadaļu | labot pirmkodu]- Vikikrātuvē par šo tēmu ir pieejami multivides faili. Skatīt: Varbūtību sadalījuma funkcija.
- Encyclopedia of Mathematics ieraksts (angliski)
|