Pāriet uz saturu

Krāmera formulas

Vikipēdijas lapa

Krāmera formulas ir formulas lineāru vienādojumu sistēmas atrisināšanai. Krāmera formulas ir derīgas tikai tādā gadījumā, ja vienādojumu skaits sakrīt ar nezināmo skaitu un sistēmai ir viens vienīgs atrisinājums. Tās ir nosauktas šveiciešu matemātiķa Gabriela Krāmera (Gabriel Cramer) vārdā, kas 1750. gadā publicēja tās patvaļīgam nezināmo skaitam, savukārt skots Kolins Maklorens (Colin Maclaurin) publicēja formulas speciālu gadījumu jau 1748. gadā (un, iespējams, zināja par to jau 1729. gadā). Krāmera formulas ir praktiski pielietot vienīgi sistēmām ar mazu vienādojumu skaitu.[1]

Vispārīgs gadījums

[labot šo sadaļu | labot pirmkodu]

Ir sistēma no n lineāriem vienādojumiem, kas satur n nezināmos un ir uzrakstāma matricu reizināšanas formā kā

kur matricai A (A ir n × n matrica) determinants ir atšķirīgs no nulles, un vektors ir kolonnas matrica, kas sastāv no nezināmajiem lielumiem.

Sistēmai ir viens vienīgs atrisinājums, katrs nezināmais ir uzrakstāms šādi:

kur Ai ir matrica, kurā A i-tā kolonnas locekļi ir aizvietoti ar b kolonnas matricas locekļiem.

Ir dota lineāra vienādojumu sistēma , kas matricu formā ir uzrakstāma kā

Pieņem, ka ad − bc nav nulle. Tad x un y var atrast ar Krāmera formulām

un

Noteikumi 3×3 matricai ir līdzīgi. Ir vienādojumu sistēma , kas matricu formātā ir uzrakstāma šādi

x, y un z vērtības var atrast šādi:

Ārējās saites

[labot šo sadaļu | labot pirmkodu]