Elementi
"Elementi" | |
---|---|
1570. gada izdevums angļu valodā | |
Autors(-i) | Eiklīds |
Valoda | Sengrieķu valoda |
Temats(-i) | Eiklīda ģeometrija, elementārā skaitļu teorija |
Žanrs(-i) | Matemātika |
Izdota | apmēram 300. gads p.m.ē. |
Lappuses | 13 grāmatas |
"Elementi" (sengrieķu: Στοιχεῖα, Stoicheia) ir matemātikas un ģeometrijas traktāts, kas sastāv no 13 grāmatām, kuras sarakstīja sengrieķu matemātiķis Eiklīds Aleksandrijā apmēram 300. gadā p.m.ē.
Grāmatās ir definīcijas, postulāti (aksiomas), dažādas teorēmas un to pierādījumi. Tās aptver Eiklīda ģeometriju un elementārās skaitļu teorijas sengrieķu versiju. Darbā ir iekļauta arī algebras sistēma, kas kļuvusi pazīstama kā ģeometriskā algebra, ar ko pietiek daudzu algebras problēmu atrisināšanā, piemēram, kvadrātsaknes no skaitļa izvilkšanā.
Eiklīda "Elementi" tiek uzskatīta par visu laiku veiksmīgāko[1][2] un ietekmīgāko[3] mācību grāmatu. Tas bija viens no pirmajiem matemātikas darbiem, kas tika iespiests pēc iespiedmašīnas izgudrošanas.
Iedalījums[4][5][6]
[labot šo sadaļu | labot pirmkodu]“Elementi” sastāv no 13 grāmatām, kurās pētītas plaknes ģeometriskās figūras un aplūkota mācība par veseliem, pozitīviem skaitļiem un to daļām. Tika aplūkoti arī nesamērojami ģeometriski lielumi, virsmu savstarpējais novietojums un ķermeņu tilpuma aprēķināšana.
Darbā “Elementi” sastopami darbi no daudziem ievērojamiem matemātiķiem, kā – Pitagors, Hipokrats, Eudokss utt.. Tajā ir aprakstīta un izmantota Pitagora teorēma, Eiklīda algoritms, attiecību teorija, izsmelšanas metode u.c.
Pirmajā grāmatā tiek definēti visi jēdzieni, kuri tiks izmantoti visā darbā (punkts, taisne, plakne), kā arī tajā ir aprakstītas nepieciešamās aksiomas. Pēc tam Eiklīds ir formulējis 5 postulātus. Tālāk pirmajā grāmatā tiek aprakstītas teorēmas par kongruenci, paralēlām līnijām, perpendikuliem, vienādām figūrām, paralelogramiem. Pirmajā grāmatā pēdējās divas teorēmas ir Pitagora teorēma un tai apgrieztā teorēma.
Otrajā grāmatā tiek aprakstīta ģeometriskā algebra
Trešā grāmata ir par riņķa līniju, tās lielumiem, leņķiem, pieskarēm utt.
Ceturtajā grāmatā tiek definētas un aplūkotas riņķa līnijā ievilktas un ap riņķa līniju apvilktas figūras
Piektā grāmata aplūko attiecību teoriju starp nogriežņiem, kuru izstrādāja grieķu matemātiķis Eudokss
Sestajā grāmatā tiek izmantota iepriekš aplūkotā attiecību teorija un tiek aprakstītas līdzīgas figūras
Septītā , astotā un devītā grāmata ir par skaitļu teoriju.
Septītajā grāmatā Eiklīds ir aprakstījis Eiklīda algoritms, kurš ļauj atrast divu skaitļu lielāko kopīgo dalītāju
Astotajā grāmatā – ģeometriskā progresija
Devītajā grāmatā tiek aplūkoti pirmskaitļi, tiek aplūkots skaitļa faktoriāls
Desmitā grāmata apraksta iracionalitāšu klasifikāciju
Vienpadsmitā grāmata, divpadsmitā un trīspadsmitā grāmata ir par stereometriju
Vienpadsmitajā grāmatā, tāpat kā pirmajā grāmatā tiek definēti jēdzieni, kurus izmantos turpmāk.
Divpadsmitajā grāmatā tiek izmantota izsmelšanas metode, lai pierādītu telpisku figūru – konusa, cilindra, piramīdas un sfēras tilpumu formulas.
Trīspadsmitajā grāmatā tiek aplūkoti sfērā ievilkti regulāri daudzskaldņi, Šajā grāmatā Eiklīds arī ir teicis, ka ir iespējams konstruēt tikai piecus regulārus daudzskaldņus.
Postulāti[4]
[labot šo sadaļu | labot pirmkodu]Šī darba pirmajā grāmatā tiek formulēti pieci postulāti:
1. No jebkura punkta līdz jebkuram punktam var novilkt taisni
2. Ierobežotu taisni var nepārtraukti turpināt pa taisni
3. No jebkura centra ar jebkuru atvērumu var novilkt riņķi
4. Visi taisnie leņķi ir vienādi
5. Ja taisne, krustojoties ar divām taisnēm, veido iekšējus vienpusleņķus, kuru summa mazāka par diviem taisniem leņķiem, tad neierobežoti turpinās, minētās divas taisnes krustojas tajā pusē, kurā šī leņķu summa ir mazāka par diviem taisnajiem leņķiem
Piektais postulāts tiek dēvēts arī par paralelitātes postulātu, taču daudzi matemātiķi līdz galam to nepieņem, jo atšķirībā no pārējiem postulātiem, tas nav tik pārliecinošs un tam nav tieša pierādījuma. Šie matemātiķi, kuri nepiekrīt piektajam postulātam bieži vien mēģinājuši pierādīt pretējo, no kā ir veidojusies jauna aksiomātiska teorija – neeiklīda ģeometrija, par kuras pamatlicēju tiek uzskatīts Nikolajs Lobačevskis.
Atsauces
[labot šo sadaļu | labot pirmkodu]- ↑ Encyclopedia of Ancient Greece (2006) by Nigel Guy Wilson, page 278. Published by Routledge Taylor and Francis Group. Quote:"Euclid's Elements subsequently became the basis of all mathematical education, not only in the Romand and Byzantine periods, but right down to the mid-20th century, and it could be argued that it is the most successful textbook ever written."
- ↑ Boyer. Euclid of Alexandria, 1991. 100. lpp.
As teachers at the school he called a band of leading scholars, among whom was the author of the most fabulously successful mathematics textbook ever written – the Elements (Stoichia) of Euclid.
- ↑ Boyer. Euclid of Alexandria, 1991. 119. lpp.
The Elements of Euclid not only was the earliest major Greek mathematical work to come down to us, but also the most influential textbook of all times. [...]The first printed versions of the Elements appeared at Venice in 1482, one of the very earliest of mathematical books to be set in type; it has been estimated that since then at least a thousand editions have been published. Perhaps no book other than the Bible can boast so many editions, and certainly no mathematical work has had an influence comparable with that of Euclid's Elements.
- ↑ 4,0 4,1 Daina Taimiņa. Matemātikas vēsture. Zvaigzne, 1990.. 25–29. lpp.
- ↑ Audun Holme. Geometry Our Cultural Heritage. Springer-Verlag Berlin Heidelberg, 2010. 77-84. lpp.
- ↑ Morris Kline. Mathematical Thought from Ancient to Modern Times. Oxford University press, 1972. 61-86. lpp.
Ārējās saites
[labot šo sadaļu | labot pirmkodu]- Eiklīda "Elementi" (angliski)
Šis ar literatūru saistītais raksts ir nepilnīgs. Jūs varat dot savu ieguldījumu Vikipēdijā, papildinot to. |
Šis ar zinātni saistītais raksts ir nepilnīgs. Jūs varat dot savu ieguldījumu Vikipēdijā, papildinot to. |